Preparation of thiazolocarbazoles via the Fischer indole synthesis

Laurent Martarello, Delphine Joseph and Gilbert Kirsch*
Laboratoire de Chimie Organique, Université de Metz, F-57045 Metz

Treatment under Fischer acidic conditions, of tetrahydrobenzo[d]thiazolones and/or arylhydrazonobenzo[d]thiazole derivatives has given a variety of thiazolocarbazoles.

The 6 H -pyrido[4,3-b]carbazoles ellipticine 1a, 9-methoxyellipticine $\mathbf{1 b}$ and olivacine 1c are well known for their anti-mitotic properties. ${ }^{1}$

1a $R^{1}=R^{3}=H, R^{2}=R^{4}=M e$ 1b $\mathrm{R}^{1}=\mathrm{OMe}, \mathrm{R}^{2}=\mathrm{R}^{4}=\mathrm{Me}, \mathrm{R}^{3}=\mathrm{H}$
1c $\mathrm{R}^{1}=\mathrm{R}^{2}=\mathrm{H}, \mathrm{R}^{3}=\mathrm{R}^{4}=\mathrm{Me}$

2a $R^{1}=R^{3}=H$
2b $\mathrm{R}^{1}=\mathrm{OMe}, \mathrm{R}^{2}=\mathrm{H}$
2c $\mathrm{R}^{1}=\mathrm{H}, \mathrm{R}^{2}=\mathrm{CO}_{2} \mathrm{Et}$
2d $\mathrm{R}^{1}=\mathrm{OMe}, \mathrm{R}^{2}=\mathrm{CO}_{2} \mathrm{Et}$

In order to obtain new derivatives and analogues for pharmacological evaluation, we decided to replace the pyridine ring D by a thiazole ring to form compounds 2.

Results and discussion

The simplest method to obtain 2 appeared to be by a Fischer indole synthesis ${ }^{2}$ with 2-methyl-4,5,6,7-tetrahydrobenzo-[d]thiazol-6-one 5a, itself prepared by a literature procedure ${ }^{3}$ from diethyl 4-oxoheptanedioate via the ethoxycarbonyl derivative 4a (Scheme 1).

Scheme 1 Reagents and conditions: i, $\mathrm{Br}_{2}, \mathrm{Et}_{2} \mathrm{O}$; ii, $\mathrm{MeC}(=\mathrm{S}) \mathrm{NH}_{2}$, EtOH ; iii. $\mathrm{EtONa}, \mathrm{Et}_{2} \mathrm{O}$; iv, $\mathrm{HCl} 1 \mathrm{~mol} \mathrm{dm}{ }^{-3}$, reflux

Application of the same reaction conditions to diethyl 3oxoheptanedioate, surprisingly gave the new compound 2-methyl-4,5,6,7-tetrahydrobenzo[d]thiazol-5-one 5b, via the ethoxycarbonyl the derivative $\mathbf{4 b}$ obtained as a keto enol mixture. The bromination of diethyl 3-oxoheptanedioate had occurred at position 4 and not position 2 as expected (Scheme 2).

The Fischer indole synthesis, as a one-step procedure applied

Scheme 2 Reagents and conditions: $\mathrm{i}, \mathrm{Br}_{2}, \mathrm{Et}_{2} \mathrm{O}$: ii. $\mathrm{MeC}(=\mathrm{S}) \mathrm{NH}_{2}$, $\mathrm{EtOH} ;$ iii, $\mathrm{EtONa}, \mathrm{Et}_{2} \mathrm{O}$; iv, $\mathrm{HCl} 1 \mathrm{~mol} \mathrm{dm}{ }^{-3}$, reflux
to the thiazoles $\mathbf{5 a}$ and $\mathbf{5 b}$, failed to give the desired compound $\mathbf{2 a - b}$ and $2 \mathbf{e}-\mathbf{f}$, but, instead, led to the isomeric angular compounds $\mathbf{6 a - d}$ (Scheme 3).

Scheme 3 Reagents and conditions. i, $\mathrm{RC}_{6} \mathrm{H}_{4} \mathrm{NHNH}_{2} \cdot \mathrm{HCl} . \mathrm{MeCO}_{2} \mathrm{H}$, reflux

Under the same reaction conditions (one-step procedure, method A) the ethoxycarbonyl derivatives $\mathbf{4 a - b}$, gave the linear compounds $\mathbf{2 c} \mathbf{c} \mathbf{d}$ and 2 g -h in good yield (60% isolated) (Scheme 4).

At this stage of the synthesis, which involved unsymmetrical ketones, one starting material could have generated two regioisomers. Hughes and Zhao ${ }^{4}$ have found that under dilute acidic conditions, k_{1} (Scheme 5) is no longer rate determining. Thus, since there is sufficient time for the ene-hydrazines to equilibrate, the thermodynamically more stable (most substituted) ene-hydrazine is preferentially formed and cyclisation from this intermediate predominates.

However, with our use of acetic acid, the reaction conditions were insufficiently acidic and so the sole isomer isolated resulted from the cyclisation of the less substituted ene-hydrazine.

In order to investigate whether the reaction conditions (one

Scheme 4 Reagents and conditions: i, $\mathrm{RC}_{6} \mathrm{H}_{4} \mathrm{NHNH}_{2} \cdot \mathrm{HCl}_{1} \mathrm{MeCO}_{2} \mathrm{H}$. reflux

Scheme 5
or two steps) have an influence on the regioselectivity of the cyclisation, we have isolated the corresponding hydrazones and cyclised them in a second step (method B) (Scheme 6). The same derivatives as in the one-step procedure were obtained.

Scheme 6 Reagents and conditions: i. $\mathrm{RC}_{6} \mathrm{H}_{4} \mathrm{NHNH}_{2} \cdot \mathrm{HCl}^{2}$. $\mathrm{MeCO}_{2} \mathrm{Na}$. reflux: ii. MeCO_{2} H. reflux

However. use of Amberlyst 15 as the acidic catalvst ${ }^{5}$ to cyclise the hydrazones $\mathbf{7 a}$ and $\mathbf{7 b}$. gave a mixture of the isomers 2 and 8 (Scheme 7)
Only compounds $\mathbf{8}$ could be isolated (40%) from the mixture. as compounds $\mathbf{2}$ were present in only small amounts ($<5^{\circ}{ }^{\circ}$) and $\mathbf{8 a}$ and $\mathbf{8 b}$ result from the cyclisation of the thermodynamic enehydrazine. Changing the cyclisation conditions seems to change the ratio of carbazoles to indolenines formed. starting from

Scheme 7 Reagents and conditions: i. Amberlyst 15 . toluene, $50^{\circ} \mathrm{C}$
hydrazones $\mathbf{7 a}$ and $\mathbf{7 b}$. When compounds $\mathbf{7 c}$ and $\mathbf{7 d}$ were treated with Amberlyst 15, we isolated only the compounds 2 g and $\mathbf{2 h}$, the same as those obtained by the one-step procedure (Scheme 8).

Scheme 8 Reagents and conditions: i. Amberlyst 15 , toluene. $50^{\circ} \mathrm{C}$
Factors which seemed to govern the regioselectivity in this indole Fischer synthesis were not only the cyclisation conditions, but also the electronic effects of the heterocycle. An examination of these cyclisation conditions will be extended to other x-cycloketone carboxylates condensed onto heterocycles.

Experimental

${ }^{1} \mathrm{H}$ NMR and ${ }^{13} \mathrm{C}$ NMR spectra were recorded using a 250 MHz Bruker spectrometer for solutions in CDCl_{3} unless otherwise stated. δ Values quoted are relative to internal CDCl_{3} and J values are given in Hz . Mps were determined on a Kofler hot-state apparatus and are uncorrected. Elemental analyses were performed on a Carlo Erba elemental analyser.

Ethyl 3-(4-ethoxycarbonylmethyl-2-methyl-1,3-thiazol-5-yl)propanoate 3
Bromine (8 g .50 mmol) was added dropwise to a stirred solution of diethyl 3 -oxoheptanedioate (11.5 g .50 mmol) in anhydrous diethyl ether $\left(15 \mathrm{~cm}^{3}\right)$ at room temperature. The mixture was stirred for 1 h . after which it was washed with water and brine. dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$ and evaporated to give an oil. This was then stirred for 72 h with thiacetamide (3.75 g .50 mmol) in anhydrous ethanol ($15 \mathrm{~cm}^{3}$) at room temperature. Evaporation of the mixture gave an oil. which was dissolved in a mixture of diethyl ether ($100 \mathrm{~cm}^{3}$) and water ($100 \mathrm{~cm}^{3}$). The two layers were separated and the aqueous layer was extracted with diethyl ether ($3 \times 50 \mathrm{~cm}^{3}$). The combined extracts were washed with aq. $\mathrm{HCl}\left(2 \mathrm{~mol} \mathrm{dm}{ }^{3}\right)$. The combined aqueous layers were neutralised with aq. $\mathrm{NaOH}\left(0.1 \mathrm{~mol} \mathrm{dm}^{-3}\right)$ and extracted with diethyl ether ($3 \times 50 \mathrm{~cm}^{3}$). The extract was washed with water. dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$ and evaporated to give an oil which was purified by distillation ($6 \mathrm{~g} .42^{\circ}{ }_{\mathrm{o}}$). bp $145-150^{\circ} \mathrm{C}$ (3 mbar) (Found: C. 54.8: H. 6.7: N. 4.8. $\mathrm{C}_{13} \mathrm{H}_{19} \mathrm{NO}_{+} \mathrm{S}$ requires C. 54.73: H. 6.67: N. $4.91_{\%}^{\circ}$); $\delta_{\mathrm{H}} 1.24(6 \mathrm{H} . \mathrm{m}) .2 .59$ (2 H, t. $J 7.4$). $2.60(3$ H. s). $3.02(2 \mathrm{H} . \mathrm{t} . J 7.4) .3 .70(2 \mathrm{H} . \mathrm{s})$ and $4.13(4 \mathrm{H}, \mathrm{m})$.

Ethyl 2-methyl-5-oxo-4,5,6,7-tetrahydrobenzothiazole-4-

carboxylate 4b

To a stirred suspension of EtONa (35 mmol) in anhydrous diethyl ether ($20 \mathrm{~cm}^{3}$) at room temperature, was added dropwise a solution of $\mathbf{3}$ (35 mmol) in anhydrous diethyl ether (5 cm^{3}). The mixture was stirred for 12 h and then treated with glacial acetic acid (2.1 g) and evaporated to give an oil. This was
purified by column chromatography on silica gel with $\mathrm{CH}_{2} \mathrm{Cl}_{2}-$ $\mathrm{MeOH}(100: 2)$ as eluent to give $\mathbf{4 b}$ ($5.4 \mathrm{~g}, 65 \%$) (Found: C, 55.25: H. 5.5: N, 5.8. $\mathrm{C}_{11} \mathrm{H}_{13} \mathrm{NO}_{3} \mathrm{~S}$ requires C, 55.22; H, 5.44; N. 5.86%): keto form $\delta_{\mathrm{H}} 1.28(3 \mathrm{H}, \mathrm{t}, J 7.2), 2.66(3 \mathrm{H}, \mathrm{s}) .3 .00(4$ H. m). 4.22 (2 H. q. J. 7.2) and $4.57(1 \mathrm{H}, \mathrm{s})$; enol form $\delta_{\mathrm{H}} 1.41$ (3 H. t, $J 7.1), 2.66(3 \mathrm{H}, \mathrm{s}), 3.00(4 \mathrm{H}, \mathrm{m}), 4.40(2 \mathrm{H}, \mathrm{q}, J 7.1)$ and 10.69 (1 H.s).

2-Methyl-4,5,6,7-tetrahydrobenzothiazol-5-one 5b

A mixture of $\mathbf{4 b}(2.1 \mathrm{mmol})$ and aq. $\mathrm{HCl}\left(1 \mathrm{~mol} \mathrm{dm}^{-3} 50 \mathrm{~cm}^{3}\right)$ was heated at reflux for 20 h . After cooling, the solution was neutralised with aq. $\mathrm{NaOH}\left(1 \mathrm{~mol} \mathrm{dm}^{-3}\right)$ and extracted with ethyl acetate ($3 \times 50 \mathrm{~cm}^{3}$). The combined extracts were washed with water, dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$ and evaporated. The residue was purified by column chromatography on silica gel with $\mathrm{CH}_{2} \mathrm{Cl}_{2}-$ $\mathrm{MeOH}(100: 2)$ as eluent to give $5 \mathrm{~b}(2.1 \mathrm{~g}, 60 \%) . \mathrm{mp} 97^{\circ} \mathrm{C}$ (EtOAc) (Found: C, 57.6; H, 5.4; N, 8.3. $\mathrm{C}_{8} \mathrm{H}_{9} \mathrm{NOS}$ requires C, 57.48: H. $5.39: \mathrm{N}, 8.37 \%$); $\delta_{\mathrm{H}} 2.66$ ($3 \mathrm{H}, \mathrm{s}$), 2.72 ($2 \mathrm{H}, \mathrm{t}, J 6.8$). 3.07 (2 H. t. J 6.8) and $3.63(2 \mathrm{H}, \mathrm{s}) ; \delta_{\mathrm{C}} 207.50,165.42,146.85$. 126.66. 41.77. 39.04. 21.28 and 19.19.

General procedure for preparation of compounds $\mathbf{6 a - d}, \mathbf{2 c}, \mathbf{2 d}$,

 $\mathbf{2 g}$ and $2 \mathrm{~h}($ method A$)$To a stirred suspension of phenylhydrazine hydrochloride (4.6 mmol) in glacial acetic acid ($15 \mathrm{~cm}^{3}$) at $80^{\circ} \mathrm{C}$ was added dropwise a solution of the appropriate ketone (4.2 mmol) in glacial acetic acid ($5 \mathrm{~cm}^{3}$). The mixture was heated at reflux for 3 h and, after cooling, added in small portions to cold water (20 cm^{3}) with stirring. The solid was collected and recrystallized.

2-Methyl-6 H -thiazolo[4,5-c] carbazole 6a

The reaction of compound $\mathbf{5 a}$ with phenylhydrazine hydrochloride gave $6 \mathrm{a}(40 \%), \mathrm{mp} 152^{\circ} \mathrm{C}(\mathrm{MeOH})$ (Found: C, 70.56 ; H. 4.2: N. 11.75: S, 13.4. $\mathrm{C}_{14} \mathrm{H}_{10} \mathrm{~N}_{2} \mathrm{~S}$ requires C, 70.56; H, 4.20; N. $11.75:$ S. 13.44%); $\delta_{\mathrm{H}} 2.94(3 \mathrm{H}, \mathrm{s}), 7.36(1 \mathrm{H}, \mathrm{td}, J 8,7$ and 1.8). 7.48 ($1 \mathrm{H} . \operatorname{td} . J 8.7$ and 1), 7.54 ($2 \mathrm{H} . \mathrm{d}, J 8.7$), $8.03(1 \mathrm{H}$. d. $J 8.7) .8 .06(1 \mathrm{H}, \mathrm{d}, J 8,7)$ and $8.50(1 \mathrm{H}, \mathrm{s}) ; \delta_{\mathrm{C}} 163.06$, 147.91. 139.39. 136.81, 127.88, 125.67, 122.07. 120.88, 119.98, 119.93. 115.95, 110.93, 109.72 and 19.89

9-Methoxy-2-methyl-6H-thiazolo [4,5-c] carbazole 6b

The reaction of compound 5 a with 4 -methoxyphenylhydrazine hydrochloride gave $\mathbf{6 b}(45 \%), \mathrm{mp} 222^{\circ} \mathrm{C}(\mathrm{MeOH})$ (Found: C. 67.7: H. 4.5: N, 10.5; S, 12.0. $\mathrm{C}_{15} \mathrm{H}_{12} \mathrm{~N}_{2} \mathrm{OS}$ requires C, 67.71; H. 4.48: N. 10.45 : S. 11.94%); $\delta_{\mathrm{H}} 2.95(3 \mathrm{H} . \mathrm{s}) .3 .99(3 \mathrm{H}, \mathrm{s}), 7.13$ (1 H. dd, $J 8.8$ and 2.4), 7.44 ($1 \mathrm{H}, \mathrm{d}, J 8.8$), 7.51 ($1 \mathrm{H}, \mathrm{d}, J 2.4$), 7.52 ($1 \mathrm{H} . \mathrm{d} . J 8.7$) , $8.01(1 \mathrm{H}, \mathrm{d}, J 8.7)$ and $8.27(1 \mathrm{H}, \mathrm{s}) ; \delta_{\mathrm{C}} 163.21$. 154.36. 137.57. 134.31, 128.15, 123.27, 117.02, 120.01. 114.92. 111.67, 110.92, 109.90, 103.75, 56.12 and 19.88 .
$\mathbf{2 - M e t h y l}$-6H-thiazolo[5,4-c] carbazole 6c. The reaction of compound 5b with phenylhydrazine hydrochloride gave 6c $(40 \%) . \mathrm{mp} 191^{\circ} \mathrm{C}(\mathrm{MeOH})$ (Found: C, 70.6; H, 4.2; N, 11.75: S. 13.4. $\mathrm{C}_{14} \mathrm{H}_{10} \mathrm{~N}_{2} \mathrm{~S}$ requires $\mathrm{C}, 70.56 ; \mathrm{H}, 4.20 ; \mathrm{N}, 11.75$; S . 13.44%): $\dot{\delta}_{\mathrm{H}} 2.93(3 \mathrm{H}, \mathrm{s}) .7 .29(1 \mathrm{H}, \mathrm{m}), 7.41(3 \mathrm{H}, \mathrm{m}), 7.76(1 \mathrm{H}$, d. $J 8.5$). $8.25\left(1 \mathrm{H}\right.$. s) and $8.65(1 \mathrm{H}, \mathrm{d}, J 7.6)$; $\delta_{\mathrm{C}} 167.75,148.07$. $138.78,138.03$. 127.21, 125.56, 123.15, 122.33, 119.99. 118.13. 116.18, $110.40,108.84$ and 20.41.
$\mathbf{9 - M e t h o x y - 2 - m e t h y l - 6 H - t h i a z o l o [4 , 5 - c] ~ c a r b a z o l e ~ 6 d . ~ T h e ~}$ reaction of compound $\mathbf{5 b}$ with 4-methoxyphenylhydrazine hydrochloride gave $\mathbf{6 d}(45 \%), \mathrm{mp} 173^{\circ} \mathrm{C}(\mathrm{MeOH})$ (Found: C, 67.8: H. 4.4: N, 10.4: S. 11.9. $\mathrm{C}_{15} \mathrm{H}_{12} \mathrm{~N}_{2} \mathrm{OS}$ requires C, 67.71 ; H , 4.48: N. 10.45 ; S. 11.94%); $\delta_{\mathrm{H}} 2.93$ ($3 \mathrm{H}, \mathrm{s}$), 3.93 ($3 \mathrm{H}, \mathrm{s}$) 7.06 (1 H. dd. $J 8.8$ and 2.4). 7.33 ($1 \mathrm{H}, \mathrm{d}, J 9$), 7.38 ($1 \mathrm{H}, \mathrm{d}, J 8.8$), 7.73 $(1 \mathrm{H}, \mathrm{d} . J 9) .8 .14(1 \mathrm{H}, \mathrm{d}, J 2.4)$ and $8.21(1 \mathrm{H}, \mathrm{s}) ; \delta_{\mathrm{C}} 167.66$. 154.27, 139.01. 133.75, 126.78, 122.70, 118.00, 116.19. 115.62, 113.37, 111.22. 109.04, 105.06, 56.14 and 20.36 .

Ethyl 2-methyl-5H-thiazolo[5,4-b] carbazole-4-carboxylate 2c. The reaction of compound 4 a with phenylhydrazine
hydrochloride gave $2 \mathrm{c}\left(60 \%\right.$), mp $237^{\circ} \mathrm{C}$ (MeOH) (Found: C, $65.8 ; \mathrm{H}, 4.5 ; \mathrm{N}, 9.0 ; \mathrm{S}, 10.4 . \mathrm{C}_{1}-\mathrm{H}_{14} \mathrm{~N}_{2} \mathrm{O}_{2} \mathrm{~S}$ requires C. $65.80 ; \mathrm{H}$, $4.51 ; \mathrm{N}, 9.05 ; \mathrm{S}, 10.29 \%$); $\delta_{\mathrm{H}} 1.58(3 \mathrm{H}, \mathrm{t}, J 7.1) .2 .87(3 \mathrm{H}, \mathrm{s})$, 4.61 ($2 \mathrm{H}, \mathrm{q}, J 7.7$), 7.31 ($1 \mathrm{H}, \mathrm{m}$), 7.51 ($2 \mathrm{H}, \mathrm{m}$). 8.17 ($1 \mathrm{H}, \mathrm{d}, J$ 7.7), $8.76(1 \mathrm{H}, \mathrm{s})$ and $9.94(1 \mathrm{H}, \mathrm{s}) ; \delta_{\mathrm{C}}$ 166.20, 166.17. 147.46, $140.25,139.47,135.23,126.94,124.40,122.46,120.54,120.15$, 118.73, 111.02, 104.07, 61.74, 19.70 and 14.57.

Ethyl 8-methoxy-2-methyl-5H-thiazolo[5,4-b] carbazole-4carboxylate 2d. The reaction of compound 4 a with 4 methoxyphenylhydrazine hydrochloride gave 2d $(60 \%$), mp $234^{\circ} \mathrm{C}(\mathrm{MeOH})$ (Found: C, 63.6; H, 4.6; N. 8.3; S. 9.4. $\mathrm{C}_{18} \mathrm{H}_{16} \mathrm{~N}_{2} \mathrm{O}_{3} \mathrm{~S}$ requires C, 63.52; H, 4.70; $\left.\mathrm{N}, 8.23: \mathrm{S}, 9.41 \%\right) ; \delta_{\mathrm{H}}$ $1.58(3 \mathrm{H}, \mathrm{t}, J 7.1), 2.87(3 \mathrm{H}, \mathrm{s}), 3.96(3 \mathrm{H}, \mathrm{t}) .4 .61(2 \mathrm{H}, \mathrm{q}, J 7.1)$, $7.14(1 \mathrm{H}, \mathrm{dd}, J 8.8$ and 2), $7.41(1 \mathrm{H}, \mathrm{d}, J 8.8), 7.63(1 \mathrm{H}, \mathrm{d}, J 2)$, $8.71(1 \mathrm{H}, \mathrm{s})$ and $8.80(1 \mathrm{H}, \mathrm{s}) ; \delta_{\mathrm{C}}$ 166.14, 166.05, 154.31, 147.11, 140.01, 134.98, 124.37, 122.37, 122.96, 118.66, 115.86, 111.67, $103.99,103.57,61.68,56.06,19.68$ and 14.57.
Ethyl 2-methyl-5H-thiazolo[4,5-b] carbazole-4-carboxylate $\mathbf{2 g}$. The reaction of compound $\mathbf{4 b}$ with phenylhydrazine hydrochloride gave $2 \mathrm{~g}(60 \%), \mathrm{mp} 154^{\circ} \mathrm{C}(\mathrm{MeOH})$ (Found: C , 65.8: H, 4.5; N, 9.15; S, 10.2. $\mathrm{C}_{1}-\mathrm{H}_{14} \mathrm{~N}_{2} \mathrm{O}_{2} \mathrm{~S}$ requires C. 65.80 ; $\mathrm{H}, 4.51 ; \mathrm{N}, 9.05 ; \mathrm{S}, 10.29 \%$) ; $\delta_{\mathrm{H}} 1.59(3 \mathrm{H}, \mathrm{t} . J 7.1) .2 .97(3 \mathrm{H}, \mathrm{s})$, $4.67(2 \mathrm{H}, \mathrm{q}, J 7.1), 7.31(1 \mathrm{H}, \mathrm{m}) .7 .50(1 \mathrm{H}, \mathrm{m}) .8 .10(1 \mathrm{H}, \mathrm{d}, J$ 7.7), $8.65(1 \mathrm{H}, \mathrm{s})$ and $10.19(1 \mathrm{H}, \mathrm{s}) ; \delta_{\mathrm{C}} 169.05,167.31 .150 .69$, 141.09, 140.61, 128.66, 126.95, 123.33, 121.59. 120.26, 120.06, $117.35,110.94,105.12,61.55,21.04$ and 14.53.

Ethyl 8-methoxy-2-methyl-5 \boldsymbol{H}-thiazolo[4,5-b] carbazole-4carboxylate 2 h . The reaction of compound $\mathbf{4 b}$ with $4-$ methoxyphenylhydrazine hydrochloride gave $2 \mathrm{~h}(60 \%), \mathrm{mp}$ $167^{\circ} \mathrm{C}(\mathrm{MeOH})$ (Found: C. 63.5: H, 4.7: N. 8.2: S, 9.35. $\mathrm{C}_{18} \mathrm{H}_{16} \mathrm{~N}_{2} \mathrm{O}_{3}$ S requires C, 63.52; $\left.\mathrm{H}, 4.70 ; \mathrm{N}, 8.23: \mathrm{S} .9 .41 \%\right) ; \delta_{\mathrm{H}}$ $1.58(3 \mathrm{H}, \mathrm{t}, J 7.2), 2.97(3 \mathrm{H}, \mathrm{s}), 3.94(3 \mathrm{H}, \mathrm{s}), 4.66(2 \mathrm{H}, \mathrm{q}, J 7.2)$, $7.12(1 \mathrm{H}, \mathrm{dd}, J 8.8$ and 2.2$), 7.42(1 \mathrm{H}, \mathrm{d}, J 8.8) .7 .57(1 \mathrm{H}, \mathrm{d}, J$ 2.2), $8.62(1 \mathrm{H}, \mathrm{s})$ and $10.05(1 \mathrm{H}, \mathrm{s}) ; \delta_{\mathrm{C}}$ 169.08. 167.26. 154.25 . 151.98. 141.97, 135.42, 128.37, 123.35. 122.05. 117.33. 115.86. 111.62, 104.93. 103.35. 61.50, 56.03. 21.03 and 14.53.

General procedure for preparation of compounds $\mathbf{2 c}, \mathbf{2 d}, \mathbf{2 g}, 2 \mathrm{~h}$, 8a and 8b via hydrazones 7a-d (method B)
Preparation of hydrazones 7a-d. A mixture of the appropriate ketone (4.2 mmol), phenylhydrazine hydrochloride (4.6 mmol) and sodium acetate (8.4 mmol) in ethanol ($30 \mathrm{~cm}^{3}$) was refluxed for 2 h . The reaction mixture was poured into water ($200 \mathrm{~cm}^{3}$). The precipitate was collected and recrystallised.

Cyclisation of 7 with acetic acid to give $\mathbf{2 c - d}$ and $\mathbf{2 g}-\mathrm{h}$. A solution of the hydrazone $7(4 \mathrm{mmol})$ in glacial acetic acid (15 cm^{3}) was heated at reflux for 2 h . After cooling, the solution was added in small portions to cold water ($200 \mathrm{~cm}^{3}$) with stirring. The solid was collected and recrystallised.

Cyclisation of $\mathbf{7}$ with Amberlyst $\mathbf{1 5}$ to give 8a-b. A mixture of the hydrazone $7(1 \mathrm{mmol})$ and Amberlyst $15(2 \mathrm{~g})$ in toluene (15 cm^{3}) was heated at $50^{\circ} \mathrm{C}$ for 2 h and then allowed to cool. The residue was filtered off and washed with toluene ($20 \mathrm{~cm}^{3}$). The organic solution was washed successively with aq. NaHCO_{3} (10%) and brine. Evaporation of the toluene gave a residue. which was purified by column chromatography on silica gel with $\mathrm{CH}_{2} \mathrm{Cl}_{2}-\mathrm{MeOH}$ ($100: 2$) as eluent.

Ethyl 6 -(p-methoxyphenyl)-2-methylhydrazono-4,5,6,7-tetra-hydrobenzothiazole-7-carboxylate 7 a . The reaction of compound 4 a with phenylhydrazine hydrochloride gave $7 \mathrm{a}(90 \%)$. $\mathrm{mp} 174^{\circ} \mathrm{C}(\mathrm{MeOH})$ (stable only if stored in a freezer) (Found: C , 62.1; H, 5.75; N, 12.8; S, 9.8. $\mathrm{C}_{17} \mathrm{H}_{19} \mathrm{~N}_{3} \mathrm{O}_{2} \mathrm{~S}$ requires C, 62.00; H, 5.77; N, 12.76; S, 9.72\%): $\delta_{\mathrm{H}} 1.41$ ($3 \mathrm{H}, \mathrm{t}, J 7.05$). $2.63(3 \mathrm{H}$. s). $2.92(4 \mathrm{H}, \mathrm{m}), 4.29(2 \mathrm{H}, \mathrm{q}, J 7.05), 5.81(1 \mathrm{H} . \mathrm{s}), 6.79(2 \mathrm{H}, \mathrm{d}$, $J 7.9), 6.92(1 \mathrm{H}, \mathrm{t}, J 7.3), 7.26(2 \mathrm{H}, \mathrm{m})$ and $10.51(1 \mathrm{H}, \mathrm{s})$.

Ethyl 6-(p-methoxyphenyl)-2-methylhydrazono-4,5,6,7-tetra-hydrobenzothiazole-7-carboxylate 7b. The reaction of compound $\mathbf{4 a}$ with 4-methoxyphenylhydrazine hydrochloride gave

7b $(60 \%), \mathrm{mp} 180^{\circ} \mathrm{C}(\mathrm{MeOH})$ (stable only if stored in a freezer) (Found: C, 66.3; H, 5.6; N, 11.6; S, 8.9. $\mathrm{C}_{18} \mathrm{H}_{20} \mathrm{~N}_{3} \mathrm{O}_{3} \mathrm{~S}$ requires C, $62.33 ; \mathrm{H}, 5.58 ; \mathrm{N}, 11.73 ; \mathrm{S}, 8.94 \%$); $\delta_{\mathrm{H}}\left[\left(\mathrm{CD}_{3}\right)_{2} \mathrm{SO}\right]$ $1.41(3 \mathrm{H}, \mathrm{t}, J 7), 2.61(3 \mathrm{H}, \mathrm{s}), 2.92(4 \mathrm{H}, \mathrm{m}), 3.85(3 \mathrm{H}, \mathrm{s}), 4.29(2$ $\mathrm{H}, \mathrm{q}, J 7$) , $5.83(1 \mathrm{H}, \mathrm{s}), 6.90(2 \mathrm{H}, \mathrm{d}, J 9.2), 7.21(2 \mathrm{H}, \mathrm{d}, J 9.2)$ and $13.5(1 \mathrm{H}, \mathrm{s})$.

Ethyl 2-methyl-5-phenylhydrazono-4,5,6,7-tetrahydrobenzo-thiazole-4-carboxylate $7 \mathbf{c}$. The reaction of compound $\mathbf{4 b}$ with phenylhydrazine hydrochloride gave $7 \mathrm{c}(70 \%), \mathrm{mp} 115^{\circ} \mathrm{C}$ (MeOH) (stable only if stored in a freezer) (Found: C, 61.9; H, 5.8: N, 12.7; S. 9.8. C_{1}; $\mathrm{H}_{19} \mathrm{~N}_{3} \mathrm{O}_{2} \mathrm{~S}$ requires C, 62.00; $\mathrm{H}, 5.77$; N , 12.76 ; S, 9.72%); $\delta_{\mathrm{H}} 1.29(3 \mathrm{H}, \mathrm{t}, J 7), 2.67(3 \mathrm{H}, \mathrm{s}), 2.87(4 \mathrm{H}, \mathrm{m})$. $4.25(2 \mathrm{H}, \mathrm{m}), 4.99(1 \mathrm{H}, \mathrm{s}), 6.88(1 \mathrm{H}, \mathrm{t}, J 7.3), 7.08(2 \mathrm{H}, \mathrm{d}$, $J 7.9), 7.27(2 \mathrm{H}, \mathrm{m})$ and $8.32(1 \mathrm{H}, \mathrm{s})$.

Ethyl 5-(p-methoxyphenyl)-2-methylhydrazono-4,5,6,7-tetra-hydrobenzothiazole-4-carboxylate 7d. The reaction of compound $\mathbf{4 b}$ with 4 -methoxyphenylhydrazine hydrochloride gave $7 \mathrm{~d}(60 \%), \mathrm{mp} 128^{\circ} \mathrm{C}(\mathrm{MeOH})$ (stable only if stored in a freezer) (Found: C, 66.25; H, 5.7; N, 11.7; S, 8.8. $\mathrm{C}_{18} \mathrm{H}_{20} \mathrm{~N}_{3} \mathrm{O}_{3} \mathrm{~S}$ requires $\mathrm{C}, 62.33 ; \mathrm{H}, 5.58 ; \mathrm{N}, 11.73 ; \mathrm{S}, 8.94 \%) ; \delta_{\mathrm{H}}\left[\left(\mathrm{CD}_{3}\right)_{2} \mathrm{SO}\right]$ $1.30(3 \mathrm{H}, \mathrm{t}, J 7), 2.68(3 \mathrm{H}, \mathrm{s}), 2.83(4 \mathrm{H}, \mathrm{m}), 3.87(3 \mathrm{H}, \mathrm{s}), 4.25(2$ $\mathrm{H}, \mathrm{m}), 5.02(1 \mathrm{H}, \mathrm{s}), 6.88(2 \mathrm{H}, \mathrm{d}, J 9.1), 7.24(2 \mathrm{H}, \mathrm{d}, J 9.1)$ and 13.73 ($1 \mathrm{H}, \mathrm{s}$).

Ethyl 2-methyl-4,5-dihydro-10b \boldsymbol{H}-thiazolo[4,5-c] carbazole$10 b$-carboxylate 8a. The reaction of compound $7 \mathbf{7 a}$ with Amberlyst 15 gave 2c and 8a (40%), mp $132^{\circ} \mathrm{C}\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}-\right.$ MeOH) (Found: C, 62.0; H, 4.85; N, 8.6; S, 9.8. $\mathrm{C}_{17} \mathrm{H}_{16} \mathrm{~N}_{2} \mathrm{O}_{2} \mathrm{~S}$ requires C, $62.20 ; \mathrm{H}, 4.87$; N, $8.53 ; \mathrm{S}, 9.75 \%$); $\delta_{\mathrm{H}} 1.20(3 \mathrm{H}, \mathrm{t}, J$
$7.05), 2.66(3 \mathrm{H}, \mathrm{s}), 3.25(4 \mathrm{H}, \mathrm{m}), 4.15(2 \mathrm{H}, \mathrm{m}), 7.28(1 \mathrm{H}, \mathrm{td}, J$ 7.4 and 0.9$), 7.41(1 \mathrm{H}, \mathrm{td}, J 7.6$ and 1.2$), 7.59(1 \mathrm{H}, \mathrm{d}, J 7.6)$ and $7.66(1 \mathrm{H}, \mathrm{d}, J 7.4) ; \delta_{\mathrm{C}} 180.94,166.93,155.55,150.79,147.23$, $137.07,129.57,129.03,126.17,125.02,123.35,120.83,62.58$, $29.59,26.79,19.44$ and 13.86

Ethyl 9-methoxy-2-methyl-4,5-dihydro-10bH-thiazolo[4,5-c]-carbazole- $\mathbf{1 0 b}$-carboxylate $\mathbf{8 b}$. The reaction of compound 7b with Amberlyst 15 gave $\mathbf{2 d}$ and $\mathbf{8 b}(40 \%)$, mp $137^{\circ} \mathrm{C}\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}-\right.$ MeOH) (Found: C, 63.1; H, 5.3; N, 8.15; S, 9.4. $\mathrm{C}_{18} \mathrm{H}_{18} \mathrm{~N}_{2} \mathrm{O}_{3} \mathrm{~S}$ requires $\mathrm{C}, 63.15 ; \mathrm{H}, 5.26 ; \mathrm{N}, 8.18 ; \mathrm{S}, 9.35 \%) ; \delta_{\mathrm{H}} 1.20(3 \mathrm{H}, \mathrm{t}$, $J 7.05), 2.66(3 \mathrm{H}, \mathrm{s}), 3.34(4 \mathrm{H}, \mathrm{m}), 3.95(3 \mathrm{H}, \mathrm{s}), 4.13(2 \mathrm{H}, \mathrm{m})$, $7.15(1 \mathrm{H}, \mathrm{dd}, J 8.7$ and 2$), 7.43(1 \mathrm{H}, \mathrm{d}, J 8.7)$ and $7.52(1 \mathrm{H}, \mathrm{d}$, $J 2$); $\delta_{\mathrm{C}} 180.37,164.82,155.65,151.02,147.23,146.83,135.02$, 129.87, 128.98, 125.95, 124.37. 123.07, 62.56, 56.10, 29.58, $26.83,18.98$ and 13.76 .

References

1 M. J. E. Hewlins, A. M. Oliviera-Campos and P. Shannon, Synthesis, 1984. 289.

2 B. Robinson, Chem. Rev., 1969. 69. 227 and references cited therein. 3 Ger. Pat., DE 2845 857, 1979 (Chem. Abstr., 1979, 91, 20493v).
4 D. L. Hughes and D. Zhao, J. Org. Chem.. 1993, 58, 228.
5 Y. Murakami, Y. Yokoyama. T. Hirasawa, Y. Kamimura and M. Izaki. Heterocycles, 1984, 22(5), 1211.

Paper 5/03663A
Received 7th June 1995
Accepted 24th July 1995

